WŁAŚNOŚCI SCYNTYLACYJNE KRYSZTAŁU BGO

z Laboratorium Wzrostu Kryształów IF PSz

Winicjusz Drozdowski

Zakład Optoelektroniki Instytut Fizyki Uniwersytet Mikołaja Kopernika Toruń

> *SEM #12 (2005/2006) 6 marca 2006 r.*

Plan referatu

- wstęp
- BGO jako scyntylator
- hodowla w PSz
- wyniki
 - wydajność scyntylacji (LY)
 - profile czasowe scyntylacji (STP)
 - termoluminescencja (TL)
- podsumowanie

BGO jako scyntylator

 \succ wzór chemiczny Bi₄Ge₃O₁₂

- pierwsze doniesienia lata siedemdziesiąte XX w. [Weber *et al.*, Nestor *et al.*]
- jon Bi³⁺ jako centrum luminescencji
- wysoki przekrój czynny na absorpcję kwantów gamma
- gęstość: 7.13 g/cm³
- efektywna liczba atomowa: 75
- temperatura topnienia: 1050 °C
- materiał niehigroskopijny

BGO jako scyntylator

- Iuminescencja: 480-500 nm
- wydajność scyntylacji: 20% NaI(Tl)
- czas zaniku scyntylacji: 300 ns
- duża odporność radiacyjna
- brak "afterglow"
- silna zależność wydajności i czasu zaniku scyntylacji od temperatury
- zastosowania: fizyka wysokich energii, astrofizyka, medycyna (PET)

Badane materiały

- laboratorium: LWK IF PSz, Szczecin
- metoda Czochralskiego
- 2 próbki w postaci pikseli 2x2x10 mm³ (małe kamery PET) i 2 kostki 2x2x2 mm³:
 - K05001 i K05002 (pixele)
 - K05011 i K05012 (kostki)
- dla porównania dwa pixele 2x2x10 mm³ z Photonic Materials Ltd.:
 - N13363-8
 - N13363-7

Metoda Czochralskiego

Politechnika Szczecińska

Instytut Fizyki Politechniki Szczecińskiej prof. Sławomir Kaczmarek prof. Marek Berkowski kryształy: LBO, BGO, LGT

Politechnika Szczecińska

Pomiar LY

- źródło Na-22 (pastylka, aktywność 1.5 μCi); energia 0.511 i 1.274 MeV
- próbka owinięta taśmą teflonową
- elektronika: Canberra
- fotopowielacz: Hamamatsu R2059
- napięcie PMT: 1500 V
- czas rejestracji pojedynczego widma energetycznego: 16 h
- geometria pionowa i pozioma

Pomiar LY

sample **K05002**, PMT voltage: **1500 V**, amplifier gain: **9**; the pixel was placed vertically on the PMT window; photopeaks at channels 72 and 208, corresponding to the 0.511 and 1.274 MeV gamma photons, respectively, are indicated

samples **K05002** (pixel) and **K05012** (cube), PMT voltage: **1500 V**, amplifier gain: **9**; the pixel was placed horizontally on the PMT window

Wydajność scyntylacji

ID	info	LY _{ver} (phe/MeV)	LY _{hor} (phe/MeV)	ER (%) at 0.511 MeV
K05001	PSz pixel 2x2x10 cm ³	328	766	27.0
K05002	PSz pixel 2x2x10 cm ³	404	828	23.1
K05011	PSz cube 2x2x2 cm ³		851	20.0
K05012	PSz cube 2x2x2 cm ³		858	18.9
N13363-8	PML pixel 2x2x10 cm ³	471	847	23.8
N13363-7	PML pixel 2x2x10 cm ³	469	776	30.9

Model "2R+"

- próbka przyklejona do okienka PMT, źródło promieniowania gamma nad próbką
- uwzględniona absorpcja promieniowania gamma oraz absorpcja światła scyntylacji
- promienie "w górę" i "w dół" jako jedyne wnoszące wkład do wydajności scyntylacji
- zależność końcowa:

$$LY = LY_0 \frac{\mu_{\gamma}}{2(e^{\mu_{\gamma}h} - 1)} \left[\frac{e^{(\mu_{\gamma} - \mu)h} - 1}{\mu_{\gamma} - \mu} + (1 - \beta) \frac{e^{(\mu_{\gamma} + \mu)h} - 1}{\mu_{\gamma} + \mu} e^{-2\mu h} \right]$$

points – experimental values; lines – "2R+" model fits with μ_{γ} = 0.289 cm⁻¹ and β = 10%

Model "2R+"

ID	info	V2H	LY ₀ (phe/MeV)	µ (cm⁻¹)
K05001	PSz pixel 2x2x10 cm ³	0.43	1058	1.46
K05002	PSz pixel 2x2x10 cm ³	0.49	1084	1.16
N13363-8	PML pixel 2x2x10 cm ³	0.56	1057	0.90
N13363-7	PML pixel 2x2x10 cm ³	0.60	942	0.75

Pomiar STP

- źródło Ba/Cs-137 (pastylka, aktywność 1.5 μCi); energia 0.662 MeV
- metoda Bollingera-Thomasa koincydencyjnego zliczania fotonów
- elektronika: Canberra
- fotopowielacze: Hamamatsu R1104 i R1460
- napięcie PMT: 1190 V
- czas rejestracji pojedynczego profilu czasowego: 16 h

samples **K05012** (cube); the profiles of the other samples from Psz are identical

Pomiar TL

- lampa rentgenowska (44 kV / 4 mA)
- monochromator: ARC SpectraPro 500i
- fotopowielacz: Hamamatsu R928
- chłodziarka helowa: APD Cryogenics
- kontroler temperatury: LakeShore
- napromieniowanie (TL, AG): 10 min
- szybkość grzania (TL): 9 K/min

Termoluminescencja

intensity (arb. units)

Termoluminescencja

ID	peak no.	<i>Т_{тах}</i> (К)	<i>n</i> 0	<i>E</i> (eV)	ln <i>s</i>
	1	76	215900	0.0503	3.554
K05001	2	115	29570	0.253	22.36
KUJUUI	3	158	133000	0.278	16.49
	4	201	2901	0.402	19.07
	1	73	218700	0.0401	2.115
K05002	2	119	26000	0.232	19.12
KUJUUZ	3	168	129600	0.291	16.09
	4	210	3818	0.331	13.92
	1	85	55460	0.0568	3.528
	2	114	12470	0.277	24.94
N13363-8	3	155	27980	0.335	21.48
	4	174	732.8	0.459	26.84
	5	206	1722	0.299	1.249

 T_{max} - temperature, at which the glow curve peaks, *E* - trap depth, *s* - frequency factor, n_0 - initial trap concentration; n_0 is in the same units as TL intensity and *s* is in s⁻¹

Termoluminescencja

ID	info	TL / (TL + ssRL)	LY _{0,tf} (phe/MeV)
K05001	PSz pixel 2x2x10 cm ³	0.022	1082
K05002	PSz pixel 2x2x10 cm ³	0.022	1108
N13363-8	PML pixel 2x2x10 cm ³	0.006	1063

Podsumowanie

- wszystkie kryształy: wolny zanik (~300 ns), niewielki udział pułapek (praktycznie zaniedbywalny w kryształach z PML)
- kryształy z PSz zbliżona do kryształów z PML wydajność scyntylacji w geometrii poziomej, wyższy współczynnik strat (1.16-1.46 cm⁻¹ w porównaniu z 0.75-0.90 cm⁻¹) powodujący obniżenie wydajności w geometrii pionowej

Podsumowanie

- potwierdzenie obserwacji Dujardina (wydajność zależy od wysokości próbki, a nie zależy od pozostałych wymiarów geometrycznych)
- plan: wygrzanie próbki K05002 w 800 °C przez 2 h i pomiar wydajności scyntylacji (spodziewany wzrost o ~20%)

